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Abstract 

Background The clinical meaningfulness of the effects of recently approved disease‑modifying treatments (DMT) 
in Alzheimer’s disease is under debate. Available evidence is limited to short‑term effects on clinical rating scales 
which may be difficult to interpret and have limited intrinsic meaning to patients. The main value of DMTs accrues 
over the long term as they are expected to cause a delay or slowing of disease progression. While awaiting such evi‑
dence, the translation of short‑term effects to time delays or slowing of progression could offer a powerful and readily 
interpretable representation of clinical outcomes.

Methods We simulated disease progression trajectories representing two arms, active and placebo, of a hypotheti‑
cal clinical trial of a DMT. The placebo arm was simulated based on estimated mean trajectories of clinical dementia 
rating scale–sum of boxes (CDR‑SB) recordings from amyloid‑positive subjects with mild cognitive impairment (MCI) 
from Alzheimer’s Disease Neuroimaging Initiative (ADNI). The active arm was simulated to show an average slowing 
of disease progression versus placebo of 20% at each visit. The treatment effects in the simulated trials were estimated 
with a progression model for repeated measures (PMRM) and a mixed model for repeated measures (MMRM) for com‑
parison. For PMRM, the treatment effect is expressed in units of time (e.g., days) and for MMRM in units of the out‑
come (e.g., CDR‑SB points). PMRM results were implemented in a health economics Markov model extrapolating 
disease progression and death over 15 years.

Results The PMRM model estimated a 19% delay in disease progression at 18 months and 20% (~ 7 months delay) 
at 36 months, while the MMRM model estimated a 25% reduction in CDR‑SB (~ 0.5 points) at 36 months. The PMRM 
model had slightly greater power compared to MMRM. The health economic model based on the estimated time 
delay suggested an increase in life expectancy (10 months) without extending time in severe stages of disease.

Conclusion PMRM methods can be used to estimate treatment effects in terms of slowing of progression which 
translates to time metrics that can be readily interpreted and appreciated as meaningful outcomes for patients, care 
partners, and health care practitioners.
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Background
Alzheimer’s disease (AD) is a debilitating neurodegen-
erative disorder and a primary cause of dementia result-
ing in reduced life expectancy [1, 2], loss of function 
and autonomy [1, 3], impaired quality of life (QoL) [4], 
care partner burden [5–7], and high costs to society [8, 
9]. Recent estimates suggest that 32 million people have 
dementia due to AD worldwide and 69 million mild cog-
nitive impairment (MCI) due to AD [10].

Up until recently, the management of AD has been 
limited to symptomatic treatment and supportive care 
[11–13], in addition to non-pharmacological multid-
omain lifestyle-based prevention strategies [14]. Recently, 
two disease-modifying treatments (DMTs), aducanumab 
and lecanemab, received accelerated approval in the 
United States (US) by the Food and Drug Administra-
tion (FDA) [15, 16]; however, the Centers for Medicare 
& Medicaid Services (CMS) restricted its coverage to 
patients enrolled in approved clinical trials [17, 18]. More 
recently, in July 2023, lecanemab received traditional 
FDA approval, and subsequently, CMS made a national 
coverage determination to provide treatment coverage 
for patients enrolled in a CMS-approved registry for real-
world data collection [19]. A third DMT, donanemab, 
is currently under FDA review for traditional approval. 
These important developments are expected to have large 
impacts on the diagnostic and management paradigms 
for AD which will require major system-wide changes 
and induce logistical challenges [20].

Many AD experts view the observed group-level effi-
cacy demonstrated in clinical trials for these first-in-class 
DMTs as both foundational therapeutic steps to build 
on and of potential to provide meaningful benefits for 
treated individuals [21–24]. However, some also ques-
tion the clinical value or meaningfulness of observed 
treatment effects when also considering potential safety 
risks and the costs and inconvenience associated with 
frequent treatment administration and safety monitoring 
[25–27]. The concept of clinical meaningfulness is central 
to this discussion. While perhaps being a broad and not 
easily defined concept [23], for the purpose of this paper, 
we consider clinical meaningfulness to describe the per-
ceived meaning or value of observed effects from the per-
spective of primarily patients but also their families and 
other key stakeholders.

The assessment of clinical meaningfulness of DMTs in 
AD is challenging for two main reasons. First, the ben-
efits of DMTs that impact one aspect of AD (e.g., amyloid 
removal) are expected to build over time and become 
most pronounced over the long term. The slowly pro-
gressing nature of clinical symptoms in early-stage AD 
makes typical trial durations of 18–24 months of follow-
up too short to show larger effect sizes that accrue on 

long-term clinical outcomes. Benefits from DMTs would 
be expected to increasingly accumulate and manifest bet-
ter over longer intervals than 2 years in individuals with 
early-stage clinical AD [23]. Second, meaningful ben-
efits represent a latent trait, the manifestations of which 
depend on several perspectives (e.g., patient-centric, 
caregiver-centric, clinician-centric, clinical trialist-cen-
tric, regulatory agency-centric, health system-centric, 
payer-centric) and different measures that assess multiple 
domains, states, or goals. The absence of purely objec-
tive and accepted observable events (such as myocardial 
infarction, stroke, or fracture in other chronic diseases), 
or clinically validated surrogate biomarkers, makes it 
more challenging to interpret the meaningfulness of trial 
results using only one measure or perspective [28, 29]. 
Instead, cognitive and functional assessment batteries are 
used to elicit the severity of symptoms as proxies for the 
staging of disease, and also as clinical outcomes in clini-
cal trials. However, these typical clinical trial outcome 
measures can be heterogeneous, lack adequate sensitivity 
to measure change in disease progression, and may not 
reflect what patients and other key stakeholders value 
the most [30], ultimately resulting in greater uncertainty 
regarding the value and meaningfulness of interventions. 
Assessments of QoL are often included as secondary 
endpoints in clinical trials [31]. While they may be help-
ful in assessing the meaningfulness of observed short-
term effects, they do not necessarily capture the full value 
of treatment, and especially not over the long term.

The clinical dementia rating (CDR) scale, and spe-
cifically its sum of boxes score (CDR-SB), is one of the 
most commonly used clinical trial measures for assess-
ing treatment efficacy on cognitive-functional severity 
in early-stage clinical AD (i.e., MCI and mild dementia 
in AD). Efforts to delineate effect sizes that can be con-
sidered clinically meaningful when analyzing change 
from baseline in CDR-SB have remained uncertain and 
contested due several factors, including differences in 
definitions, methodology, populations and study-specific 
characteristics such as clinical trials versus observational 
studies, inclusion/exclusion criteria (including stage and 
biomarker validation), assessment intervals, and proto-
col and rater-related characteristics, all of which impact 
signal-to-noise ratios and detection and appreciation of 
sensitivity to changes [32–35].

Symptomatic treatments in AD are standard-of-care 
and provide value, however, they are not expected to 
change the long-term slope of clinical decline, and if, or 
when, discontinued would not be expected to produce 
persistent benefits [13]. DMTs, however, are postu-
lated to produce treatment effects that persist and even 
accumulate over time resulting in a long-term delay of 
disease progression, which if sizeable surely would be 
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considered clinically meaningful. At least part of their 
effect is expected to persist also after the discontinua-
tion of treatment. However, the value of lower scores on 
clinical outcome measures (e.g., CDR-SB) at different 
stages of dementia severity and over time, particularly 
on intervals of 1–2  years, also remain opaque and not 
well-understood, especially by clinicians and patients and 
families, as these outcomes (e.g., CDR scale) are not used 
in clinical practice. Therefore, when expressing the effect 
of potential DMTs on clinical outcomes as a time delay 
or relative slowing of progression could offer a power-
ful, face-valid, and readily interpretable (by researchers, 
clinicians, and patients and families alike) alternative to 
reporting a typical change in points on a scale such as 
CDR-SB. This should not be seen as a substitute to stand-
ard methods, but rather as a completement with specific 
merits.

In this work, we demonstrated how a new statisti-
cal method, progression models for repeated measures 
(PMRM), can be used to estimate a slowing of disease 
progression from simulated trial data of a hypothetical 
DMT in AD [36]. We also show how estimates of slowing 
of progression from clinical trials can be implemented in 
a standard Markov model, commonly used for the health 
economic evaluation of treatments in AD [37, 38]. We 
explore whether estimating in the time dimension the 
slowing of progression can both add to the interpret-
ability of a potential clinical treatment effect and offer 
additional statistical power by making the best use of the 
available data.

Methods
Concept of PMRM
PMRM are a new class of flexible nonlinear mixed-effects 
models that enables estimation of the treatment effect 
in terms of the slowing or delay of the time in disease 
progression. They are particularly applicable in progres-
sive diseases such as AD and Parkinson’s disease, where 
potential DMTs may delay or slow disease progression on 
a commonly used outcome scale relative to the placebo 
group. In addition to enabling estimation of time delays 
and the associated relative slowing of disease progres-
sion, the PMRM framework also provides low-dimen-
sional parameterizations of treatment effects to estimate 
the absolute or proportional reduction in clinical decline 
[23, 36].

The PMRM is a novel method, but time-based differ-
ences in general have already been possible to estimate 
using alternative model specifications, such as with accel-
erated failure time (AFT) models. The AFT is a para-
metric model where estimates of time-based differences 
are possible since the estimated parameters of the AFT 
model measure the effect of a particular covariate on the 

mean/median survival time. AFT models use time-to-
event data and have been widely used in some fields, e.g., 
within oncology and aging [39, 40]. The PMRM can be 
seen as an extension of the AFT framework to model a 
continuous outcome measure (rather than a single event).

Case study
Simulation
To simulate a realistic interventional trial, testing the 
effects of a potential DMT in AD, data was obtained from 
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
[41]. ADNI was launched in 2003 and has recruited/col-
lected data/specimens from more than 1700 participants 
with unimpaired cognition, significant memory concern, 
MCI, and dementia due to AD in the US and Canada. The 
main objective of ADNI has been to assess if the clinical 
and neuropsychological data, neuroimaging data, genetic 
data, and data related to biochemical biomarkers can 
be combined to determine the progression of MCI and 
dementia due to AD [41, 42]. Up-to-date information on 
ADNI is available at https:// adni. loni. usc. edu/.

Inclusion criteria
The placebo arm of a clinical trial in amyloid-positive 
MCI subjects was simulated using the estimated dis-
ease trajectories from ADNI participants meeting typi-
cal clinical trial inclusion criteria. ADNI participants 
were selected if they were amyloid positive according to 
a brain positron emission tomography scan or analysis 
of cerebrospinal fluid, aged ≥ 55 to < 86  years, and had 
a clinical diagnosis of MCI, which was defined as hav-
ing a score ≥ 22 on the Mini-Mental State Examination 
(MMSE, range 30–0, higher scores indicate less impair-
ment) [43] and a CDR-SB score < 4.5, at baseline. A total 
of 537 participants met these inclusion criteria. Baseline 
characteristics for the included ADNI participants are 
shown in Table 1.

Table 1 Baseline characteristics for 537 participants included 
from  ADNIa

a This cohort was used to simulate a placebo arm of a clinical trial in amyloid-
positive MCI patients. The CDR scale is a staging tool used to determine the 
severity of dementia-related symptoms across six domains (three cognition 
domains: memory, orientation, judgment & problem solving; three functional 
domains: community affairs, home & hobbies, and personal care) each of which 
is scored between 0 and 3 following a semi-structured interview. The CDR-SB 
score is the sum of all six domain scores (range 0–18) and is considered a more 
sensitive measure of dementia severity compared to the alternative CDR-Global 
score [44]

N Mean age, years Male, n Median CDR-SB Median MMSE

537 72.7 313 1.5 28

https://adni.loni.usc.edu/
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Primary outcomes
Primary outcomes were defined to be CDR-SB for the 
comparison of models where the outcome is measured on 
a continuous scale, and time to progression to dementia 
derived by dichotomizing CDR-SB for the time-to-event 
model. Progression to dementia was defined as reach-
ing a CDR-SB ≥ 4.5 at a post-baseline visit, correspond-
ing to transitioning into mild dementia as suggested by 
O’Bryant et al. (2010) [45].

The CDR-SB trajectory was estimated using a con-
strained longitudinal data analysis model with assumed 
identical mean CDR-SB across treatment arms due to 
randomization and an unconstructed covariance matrix 
(meaning no assumptions are made about the variances 
and covariances between an individual’s scores across 
visits) [46]. Data from baseline visits, and at months 6, 
12, 18, 24, and 36 after baseline were used, and the esti-
mated mean values across the six visits, corresponding 
to the placebo arm, are shown in Fig. 1. Tabular data and 
the estimated covariance matrix describing the variation 
across visits are presented in the Additional file. A 20% 
slowing of disease progression was applied to the mean 
placebo trajectory at each visit using linear interpolation 
to simulate the mean trajectory of the active treatment 
arm (Fig.  1). A time delay may be better aligned with a 
disease-modifying effect thought to delay disease pro-
gression. It may also be easier to interpret an expected 
delay of the disease by X months compared to a reduc-
tion of Y points on a clinical scale. Finally, a reduction in 
progression implicitly assumes treated patients will never 

progress to the same point as comparators, whereas the 
time delay will still allow all to fully decline in due time.

Participant-level trajectories were simulated based on 
estimated CDR mean trajectories and a temporal cor-
relation structure. For the time-to-event model, the 
simulated participant-level trajectories were later dichot-
omized into the progression to dementia outcome. A 
thousand simulations were conducted across a number 
of trial scenarios, varying the number of patients per arm 
(300, 400, 500, 600, and 700 individuals) and trial dura-
tion (18, 24, and 36 months). Further details of the simu-
lation are described in the Additional file.

Statistical models
The present study included time-based PMRM [36], 
mixed models of repeated measures (MMRM) [46] as 
well as the Cox proportional hazard model [47].

The time-based PMRM is a flexible model from the 
PMRM family of models for estimating time-based 
changes in disease progression without assuming pro-
portional slowing across visits. The time-based PMRM 
assumes the mean outcome of active treatment can be 
described as the mean outcome of the placebo group at 
a different time. The DMT treatment effect estimated at 
each visit represents the slowing of disease progression 
in the active arm relative to the placebo arm (as shown 
by the dashed lines in Fig. 1). For example, the treatment 
effect at the final visit in Fig. 1 corresponds to a 20% slow-
ing of disease progression in the active arm compared to 

Fig. 1 Estimated mean trajectory of the ADNI participants’ data (placebo) and the corresponding active treatment arm. The active treatment arm 
is derived by applying a proportional 20% time delay in disease progression at each visit compared to placebo (dashed horizontal lines)
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the placebo arm, which translates to a 7-month slowing 
of progression.

The MMRM are a class of statistical models often used 
in studies with longitudinal continuous outcomes to 
account for the correlation between repeated measure-
ments within each patient [48]. In contrast to the PMRM, 
which measures the treatment effect on the unit of time, 
the MMRM measures the treatment effect on the unit of 
the outcome (corresponding to the y-axis in Fig. 1).

Cox proportional hazards model is a widely used semi-
parametric model to estimate the relationship between 
covariates and the time to an event. The estimates of the 
Cox model are often presented in terms of hazard ratios 
which can be interpreted as the risk of an event relative 
to exposure, e.g., as the reduction in the risk of progress-
ing from MCI to dementia due to treatment [49].

Implementation in a health economic model
To estimate the value of a treatment, one needs to map 
the estimate of treatment effect from short-term clinical 
trials to a set of measures that can be ascribed long-term 
value through a health economic model. Here we trans-
late the slowing of disease progression, as estimated by 
PMRM from trial data, to estimates of long-term impact 
on clinical trajectories using a Markov model. This type 
of model has commonly been used for the health eco-
nomic evaluation of treatments in AD [37, 38]. Markov 
models divide patients into a finite number of states and 
examine how patients transition between these states 
over time. Each state is typically assigned relevant out-
comes such as costs and QoL. Treatments are modeled by 
changing the probabilities of making transitions between 
states. The purpose of the modeling is to examine how 
treatment changes the amount of time spent in each of 
the model states, and how this translates into changes in 
outcomes such as costs and QoL. Our analysis is limited 
to looking at time in each state. The Markov model was 
run in monthly cycles with a horizon of 15 years, simu-
lating transitions between four states: MCI due to AD, 
mild AD dementia, moderate-to-severe AD dementia, 
and death. Constant transition intensities were applied 
over all cycles of the model. Mortality was approximated 
at a monthly probability of death at 0.3%, 0.5%, and 1.0% 
in MCI due to AD, mild AD dementia, and moderate-
severe AD dementia respectively, which corresponds to 
the expected risk of death in a US 70-year-old assuming 
a relative risk increase of 2, 3, and 6 in each state, respec-
tively [50]. Transitions between alive states were adapted 
using previously published data from beta-amyloid-posi-
tive individuals in the National Alzheimer’s Coordinating 
Center database [50, 51] assuming no back-transitions 
to less severe states. That is, annual probabilities of 23% 
from MCI due to AD to mild AD dementia and 39% from 

mild AD dementia to moderate-to-severe AD dementia, 
(the residuals remaining in the same state) [50]. Annual 
probabilities were transformed to monthly probabilities 
by the traditional approach [52], and half-cycle correc-
tion was applied to the first and last cycle.

We simulated two arms in the model: one on active 
treatment and one on placebo. The standard approach 
of simulating a treatment effect in a Markov model is to 
apply a risk reduction, e.g., as estimated by a Cox model, 
on the transition probabilities to more severe stages of 
disease. This corresponds to an effect on the y-axis show-
ing the proportion in each state at a specific point in time 
(e.g., in Fig. 1). Instead, when implementing a slowing of 
disease progression, we extended the time axis (i.e., the 
x-axis) of the treatment arm by the estimated percent-
age slowing. Thereby the simulated treatment arm has 
the same distributions across states as the placebo arm at 
each cycle, but the cycle lengths of the treatment arm are 
longer.

Results
Estimated treatment effects
The change from baseline in CDR-SB was estimated 
using the treatment effects from the fitted PMRM and 
the MMRM with 700 patients across three scenarios 
with trial lengths of 18, 24, and 36 months, respectively. 
To evaluate the power of the different models for esti-
mating treatment effects, 1000 simulations of each sce-
nario were replicated. The median treatment effects are 
shown in Table 2. The PMRM estimated a 19% horizon-
tal delay in disease progression in the scenario with a 
trial length of 18 months, 19% with 24 months, and 20% 
with 36  months. This translates to a delay of progres-
sion of ~ 7  months over a trial duration of 36  months. 
The MMRM estimated a 22% vertical reduction in CDR-
SB in the scenario with an 18-month trial length and a 
25% reduction in scenarios with trial lengths of 24 and 
36  months, corresponding to approximately a 0.5-point 
worsening in CDR-SB in the placebo arm compared to 
active treatment after 36  months. The risk of progress-
ing to dementia during the study period was estimated 
using the Cox proportional hazards model, which found 
a hazard ratio of 0.85 of the risk of progressing to demen-
tia in the scenario with an 18-month trial length, and a 
hazard ratio of 0.83 in scenarios with trial lengths of 24 
and 36 months.

Estimated mean trajectories of the change from base-
line in CDR-SB from a single simulation of a scenario 
with 700 subjects and 36 months of follow-up are shown 
in Fig. 2 for illustrative purposes. The probability of pro-
gressing to dementia estimated by the Cox proportional 
hazards model (in this single scenario) is visualized in the 
Additional file.



Page 6 of 11Jönsson et al. Alzheimer’s Research & Therapy           (2024) 16:48 

Table 2 Median treatment effects estimated by the PMRM, MMRM, and the Cox proportional hazards  modela

a Data are shown across scenarios with different sample sizes and study lengths (1000 simulations per scenario). The table shows the treatment effect at the final visit 
for the PMRM and the MMRM. The hazard ratio summarizes the treatment effect over the entire study duration

Sample size Study length 
(months)

Median effect

PMRM (% time delay, measured on 
the horizontal axis)

MMRM (% reduction in CDR-SB, 
measured on the vertical axis)

Cox (HR of 
progressing to 
dementia)

200 18 19% 23% 0.84

200 24 20% 26% 0.82

200 36 20% 25% 0.82

300 18 19% 23% 0.85

300 24 19% 26% 0.83

300 36 20% 25% 0.84

400 18 19% 22% 0.85

400 24 20% 26% 0.83

400 36 20% 25% 0.83

500 18 19% 22% 0.85

500 24 20% 26% 0.83

500 36 20% 25% 0.83

600 18 19% 22% 0.85

600 24 19% 26% 0.83

600 36 20% 25% 0.83

700 18 19% 22% 0.85

700 24 19% 25% 0.83

700 36 20% 25% 0.83

Fig. 2 Estimated mean trajectory of the change from baseline in CDR‑SB in a representative simulated scenario. Trajectories are shown 
for the PMRM and the MMRM models in a single simulated scenario with 700 subjects and a 36‑month trial duration. The estimated 
trajectories for the PMRM and the MMRM were visually indistinguishable and are shown as a single trajectory within each treatment group 
(results may therefore deviate slightly from the medians shown in Table 2). The estimated hazard ratio from the Cox proportional model 
is shown in the bottom‑left corner. The delay in disease progression, as estimated by the PMRM, is illustrated by the horizontal dotted lines, 
and the difference in CDR‑SB, as estimated by the MMRM, is represented by the vertical arrows
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All three models showed relatively consistent results 
across scenarios when estimating the treatment effect 
at the final visit with varying sample sizes and study 
lengths. The estimates from the PMRM ranged between 
19 to 20% time delay in disease progression, the MMRM 
ranged between 22 to 26% in the difference in CDR-SB, 
and the Cox model estimated a hazard ratio of progress-
ing to dementia between 0.82 and 0.85 (Table 2).

Comparison of the statistical power
The PMRM was shown to consistently have a slightly 
greater power to detect treatment effects than that of 
MMRM, regardless of sample size and trial length. The 
Cox proportional hazards models would require a greater 
sample size to consistently detect treatment effects, only 
exceeding a power above 60% in the simulation with 700 
patients and a trial length of 36 months. The results are 
presented in the Additional file.

Implementation in health economic model
In the health economic model, the slowing of progres-
sion (PMRM) effect was implemented by extending the 
time axis of the active arm by 19% (based on the esti-
mated median time delay from the 18  months scenar-
ios in Table  2) and assuming transitions occur at these 
revised time points (1.19, 2.38, 3.57, 4.76… months, etc.). 
The slowing was assumed to persist throughout the time 
horizon, at 19%, and therefore indirectly continue to 
slow progression from all states including to death. This 

resulted in a delay of transitions at each month when 
compared to the placebo arm.

The modeling suggested an average overall survival of 
111 and 121 months for the placebo and treatment arms, 
respectively. This implies estimated life expectancy gains 
of 10  months for treated patients compared to placebo. 
Treated patients were estimated to spend an additional 
7 months in MCI due to AD and, additionally, 3 months 
in mild AD dementia, compared to placebo, whereas 
both arms spent an equal amount of time in moderate to 
severe AD dementia (Fig. 3).

Discussion
In this modeling simulation study, we explored how 
estimates on the slowing of disease progression can be 
derived from clinical trial data and be used in a health-
economic model for exploring long-term outcomes of 
disease modification in AD.

First, we showed that PMRM methods can accurately 
represent a hypothetical slowing of progression at 20%, 
translating this to a 7-month delay of progression over 
a trial duration of 36 months. According to the MMRM 
model, such slowing in our simulated scenarios corre-
sponded to a reduction in the decline of CDR-SB over 
36 months of about 25% or approximately 0.5 points on 
the CDR-SB. Arguably, reporting a treatment effect in 
terms of the number of months gained at a certain point 
in time on a global function measure such as CDR-SB 
represents a face-valid and readily interpretable approach 
for clinicians, patients, and families alike, compared to 

Fig. 3 Average time spent in each health state including overall life expectancy over 15 years. The figure includes a comparison of placebo 
and treatment arm simulations
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points gained on such measure [23]. The PMRM methods 
therefore enable translation of clinical trial endpoints to 
a metric (time) that can be perceived in clinically mean-
ingful terms by patients, their caregivers, and health care 
professionals in general [53]. Reporting on the slowing of 
disease may be better aligned with the underlying mode 
of action of a DMT where much of the benefit is expected 
to accrue in the long term, in contrast to symptomatic 
treatments which need to demonstrate acute benefits in 
the short term. Nevertheless, this requires assumptions 
on the persistence of effects over the long term. Further-
more, estimating a time component using PMRM makes 
it possible to assess different aspects of disease on a com-
mon time scale, facilitating comparisons across outcomes 
(both within and between trials) [54]. This could be part 
of a multidimensional reporting (i.e., with a broader use 
of multiple outcomes and their representations) of clini-
cal trial data and help contextualize the potential benefits 
of treatments as suggested by others [28, 55].

Second, we showed that PMRM methods had slightly 
greater power across all scenarios compared to MMRM 
for estimating a treatment effect which is a slowing of 
disease progression. This power gain is likely the result 
of the treatment effect at the final visit being computed 
using data from multiple visits in the placebo arm due to 
the spline interpolation. Another potential factor may be 
that the space of possible trajectories of PMRM is slightly 
lower than that of MMRM (i.e., the active arm cannot 
improve beyond the range of placebo trajectories with-
out awkward extrapolation). This may contribute to the 
slight advantage for PMRM which we are seeing. The low 
power of the Cox models is probably due to the fact that 
they rely on a relatively simple dichotomous outcome, 
thereby disregarding the granularity offered by CDR-SB 
and disregarding multiple observations over time (as they 
are summarized in a single time to event). Furthermore, 
for the Cox models, no effort was made to account for 
the interval-censored data that arise in trials with vis-
its occurring on a small number of discrete time points. 
The implications of using a model with a higher power 
to detect treatment effects may be that fewer subjects are 
needed in clinical trial, which would improve its feasibil-
ity and lower its cost.

Third, we showed that estimates of slowing of progres-
sion can be implemented in a standard Markov model 
which are commonly used for the health economic evalu-
ation of healthcare interventions. By manipulating the 
time signatures on the x-axis, we allowed the treatment 
arm to progress at a slower rate (19% as estimated with 
the PMRM) and compared the results to the natural 
progression expected for patients on placebo. We chose 
the estimated effect (rather than the true 20% effect) to 
reflect the fact that the true effect is typically not known. 

Given the assumptions of our simple health economic 
model, a delay of progression of 7 months at the end of 
the 36-month trial is expected to result in an additional 
10 months of life expectancy, 7 months without progress-
ing from MCI due to AD to more severe states and 3 
additional months in mild AD dementia. These estimates 
rely on the assumption that the slowing of 19% would 
persist over time, irrespective of in which states patients 
are currently in, and it ultimately results in an equal delay 
in time to death. The approach can also be extended to 
more complex models, e.g., with time-varying transition 
intensities, and with more flexible implementation of the 
treatment effect, e.g., to allow for different assumptions 
regarding treatment effects on mortality.

The results of the present study are in concordance with 
the study by Raket (2022) which compared the PMRM 
model with conventional models to quantify treatment 
effects in terms of slowing of disease progression using 
both simulated and historical data from AD clinical tri-
als. However, there were a few differences, the first being 
the choice of primary outcome (cognitive subscale of the 
AD assessment scale) and the second being the com-
peting model (constrained longitudinal data analysis) 
[36]. Two recently published studies also emphasized 
the importance of time-based approaches for assessing 
the effect of a DMT, donanemab [54, 56]. The study by 
Dickson et al., 2023 used data from the TRAILBLAZER-
ALZ study and reported a delay in progression of disease 
by 5.3 months and 5.2 months as measured by the Inte-
grated Alzheimer’s Disease Rating Scale (iADRS) and 
the CDR-SB, respectively after 18  months of treatment. 
In addition, the study analyzed the TRAILBLAZER-ALZ 
dataset using time-based PMRM methodology, resulting 
in similar findings (delay by 5.4–5.8  months) [54]. The 
other study by Sims et al., 2023 was the TRAILBLAZER-
ALZ 2 study which also reported a delay in disease pro-
gression by 4.36 (95% CI, 1.87–6.85) months and 7.53 
(95% CI, 5.69–9.36) months on the iADRS and the CDR-
SB, respectively, at 76 weeks in the low/medium tau pop-
ulation [56].

ADNI data may not be representative to other groups 
of patients with AD. For instance, differences in clinical 
definitions, inclusion criteria and geographical distribu-
tion of study sites may influence the average rate of cog-
nitive decline observed in a study [57, 58]. While this may 
affect our estimated rates of decline, it should not have 
any important impact on our main findings.

Limitations
Our analysis is limited by only simulating one type of 
treatment effect, i.e., a proportional 20% slowing of pro-
gression at each visit [36], however, evaluated PMRM 
across five different types of simulated treatment effects 
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(including reduction in decline and stable benefit scenar-
ios) and found the PMRM methods had an advantage in 
terms of power, when the treatment effects increased in 
time.

We used a simplified Markov model with constant 
transition intensities to demonstrate how estimates on 
slowing of progression can be implemented. As such we 
made several assumptions which may have impacted our 
results. For instance, we assumed treatment would have 
an impact on all causes of mortality which is likely not 
accurate [2], and we assumed the treatment effect per-
sisted over time which would need to be confirmed in 
long-term studies.

Conclusions
In conclusion, our study adds to the knowledge base 
on multidimensional reporting from clinical trials in 
AD. It shows how PMRM methods can be used to esti-
mate treatment effects in terms of slowing of progres-
sion which translate to time metrics that can be readily 
interpreted and appreciated as meaningful outcomes for 
patients, care partners, and health care practitioners. Our 
modeling approaches also subsequently inform on how 
these findings can be incorporated into health economic 
analysis. Future studies may explore PMRM applications 
with actual clinical trial data and in other diseases.
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